Implementation of a Breast MRI Program
- all things considered

Sughra Raza, MD
Associate Director Breast Imaging
Brigham and Women’s Hospital
Harvard Medical School
ISMRM, Durban 2011

Objectives
• How to select an optimal magnet
• What to be aware of during installation & setup
• Exam performance & interpretation issues

Breast MRI
• The rapid increase in use of MR in breast imaging has been aided by
 – Interventional techniques & equipment for MRI-only detected lesions
 – ACS guidelines (2007) for indications
 • women at high risk
 • tumor staging
 • treatment monitoring

ACS Guidelines 2007
www.cancer.org
• Recommended based on evidence
 – Women with known BRCA mutations
 – Women with first degree relative with BRCA mutation but themselves not tested
 – >25% lifetime risk by assessment mode

• Recommended based on expert consensus
 – Post radiation to mediastinum
 – Typically Hodgkins survivors (treated at <30 years)

Magnet selection
• Consider
 – Your practice needs
 – multi-specialty use vs breast imaging only
 – may have to consider needs of neuro, MSK, cardiac
 – Hospital vs outpatient only
 – Imaging only or interventional procedures
 – Biopsy capability is highly recommended for any facility performing breast MRI

• Not enough data to recommend for or against the following histology, imaging, and historical data
 – Non-invasive lobular neoplasia: LCIS, ALH
 – Atypical ductal hyperplasia (ADH)
 – Dense breasts on mammogram
 – Personal history of breast cancer (invasive and DCIS)

• Recommended against (by expert consensus)
 – Women with lifetime risk < 15%
Magnet selection

- 1.5 T (lesser strength not recommended for breast)
- 3 T
- Dedicated breast system
 - One of the above or
 - specially designed by manufacturer for breast imaging only

Dedicated breast magnet

- What volume justifies a dedicated breast magnet
- Facility (new construction / renovation)
- Free standing (carry full support / overhead) or additional unit to existing suite
- Imaging only / and procedures; interventional volume
- Operating expense (personnel, supplies, utilities)
- With qualifications:
 - minimum of 6-8 patients per day

Coil selection

- Bilateral breast surface coils
 - 4, 7 and 8 channel coils exist
 - 16 channel coils recently available
 - Better axillary coverage
- Biopsy ease on new 16 channel coils
 - Mediolateral and cranio-caudal access
 - Built in lights

Current 1.5 T imaging

- Optimize high resolution protocols using 3D gradient echo sequences
 - Better signal to noise ratio (SNR)
 - In-plane resolution < 1mm x 1mm
 - Thinner slices (≤ 1 mm)
 - Shorter acquisition times due to ↓ TR/TE (1-2 min)
 - Bilateral imaging with full coverage
- High spatial and temporal resolution
 - Detailed morphologic analysis and temporal mapping

Imaging at 3T

- Inherent advantages (twice the signal strength of 1.5)
 - Thinner slices = higher resolution
 - Chemical shift = field strength, doubling from 1.5 to 3T
 - better fat suppression
 - better metabolite peak separation for spectroscopy
 - Higher susceptibility effects
 - Improved FIESTA sensitivity to hemorrhage (modified protocols)
 - Higher signal intensity:
 - ↑ better Diffusion Weighted Imaging

Imaging at 3T

- Inherent challenges
 - RF deposition scales exponentially with strength
 - tissue heating
 - SAR limits set by Int’l Electrotechnical Commission*
 - Higher ambient noise – almost double c/w 1.5T ~130 dB
 - IEC/ FDA permissible limit 99 dB
 - Magnet length affects noise, shorter bore louder
 - System inhomogeneity at larger FOV
 - Higher susceptibility, dielectric effect, chemical shift
 - Dielectric effects
 - exacerbated by high SNR surface coils
 - manifested as shading or signal drop off

* SAR limits: 8W/kg over 5 min, or 4W/kg whole body over 15 min
Dielectric effect

Early images

Later 3T imaging

Current 3T imaging

Magnet selection: 1.5 vs 3 T

- Neuro
 - Better contrast on 1.5 T for day to day imaging
 - 3T: spectroscopy, perfusion, and functional imaging

- MSK
 - Years of established work on 1.5 T, but
 - Isotropic imaging on 3T with multi-channel coil; better SNR

- Cardiac
 - 1.5 T can do all the clinical work
 - Lit supports better perfusion, and cine on 3T
 - New sequences, molecular imaging
 - Artifacts, shimming problems

Thanks to Drs. Hsu, Yoshioka, Kwong
Breast MRI on 1.5 vs 3 T

- No evidence yet for diagnostic ability with 3T
- Kuhl 2006: “breast imaging at 3T almost ready for routine clinical use”
- Later: concern about limited contrast enhancement due to inherent B1 field inhomogeneity
- Can be overcome with modifications, newer software and tailored protocols

Spectroscopy

- Spectroscopy
 - Japanese study: best sensitivity and specificity when masses > 15 mm = 50 and 87%*
 - 3T: finer analysis of choline peak
 - Distinguish invasive carcinoma from DCIS and DCIS with microinvasion may be possible

DWI

- Role in breast not established
 - Multiple studies at 1.5 T: mean ADC values for malignant lesions significantly lower than for benign
 - Recent study at 3T compares sensitivity/specificty of ceMRI, qualitative DWI and quantitative ADC
 - 95/91%, 95/63.6%, and 90/91% respectively

Other considerations

- Siting issues
 - Interference from ambulances, elevators etc
 - Motion (best on ground floor?)
 - Reinforcement of several floors below may be required
- Patient discomfort
 - Mild dizziness common
- Patient safety: contraindications
 - IUD, stents, implants, orthopedic devices, defibrillators

Patient safety

- Updated guidelines and recommendations from peer-reviewed literature
 - International Society for Magnetic Resonance in Medicine(ISMRM)
 - American College of Radiology (ACR)
 - Food and Drug Administration (FDA)
 - National Electrical Manufacturers Association (NEMA)
 - International Electrotechnical Commission (IEC)
 - Medical Devices Agency (MDA)
 - Institute for Magnetic Resonance Safety, Education & Research (IMRSE&R)
In summary

- Breast imaging at 1.5 T is established
- 3T if interested in newer techniques like spectroscopy, DWI
- Beware
 - Challenges in siting & installation
 - Protocols & sequences
 - Patient safety (implanted devices)
 - Perhaps best if there’s a back-up 1.5 T for such pts
- Don’t expect a “plug & play” system delivered

Installation

- Siting – critical for optimal imaging results
 - engineering survey of selected site by both vendor and your own consultants
- Ramping up takes 3-5 weeks
 - Calibration
 - Phantom testing
 - Sequence testing

Installation

- Scanning readiness
 - Protocol testing: technologists, physicists
 - Volunteers: +/- contrast
 - Field homogeneity, fat suppression, motion artifacts
 - Test breast coils
- Supertechs and physicists are key
 - Experience in breast MRI
 - Build protocols
 - Tailor sequences
 - Optimize magnet time

Patient Selection

- Introductory letter to referring clinicians, including ACS guidelines
- Accept all referrals?
- Approve each request individually?
 - Some practices will only schedule exam when all clinical info has been provided
 - Tailor protocol for every exam?

Scheduling

- Trained schedulers, with screening questions
- Safety issues: allergies, surgical implants
- Renal function (NSF issues)
- Time of menstrual cycle (ideal 5-12 days)
- Previous studies: mammo, US and MRI

Telephone questionnaire
Pregnancy issues

- Gadolinium currently not recommended
- Not enough data
 - Known cases where pregnant women received contrast show no harm to patient or baby

Performance of the MRI exam

- Well trained technologists
- IV team availability
- Interview patients using detailed screening sheet
- Review history form with patients
- Log in any outside studies pt brings in
Protocols

- Standard
 - Localizer or scout sequence
 - T2 fat sat, to identify cysts, seromas
 - T1 non fat sat, for fatty lesions
 - Pre and Post contrast T1 fat sat 3D dynamic, < 2 min/acquisition for peak tumor enhancement
 - Dynamic sequence plane
 - sagittal vs axial or coronal
 - Change from one to other makes comparison between studies challenging

Exam performance

- Technologist should ensure
 - Appropriate contrast delivery (IV access)
 - each protocol shows optimal imaging parameters
 - field of view includes all breast tissue, axillae
 - proper fat suppression
 - motion or other artifact

Indications for unilateral exam

- Previous mastectomy
- BI-RADS 3 – previous at same institution
- Monitoring chemotherapy
 - Bilateral if no baseline at institution

interpretation

- Radiologist
 - Breast imager vs MRI staff
 - Familiarity with basic principles of MRI
 - Newcomers: familiarity with ACR BI-RADS for MRI
 - Attend breast MRI course
 - 1-2 week observership (including teaching files)
 - Have first 20-30 cases double read
 - regardless of experience, second opinions are valuable
Interpretation

- Radiologist should have
 - Requisition with exam indication
 - Patient history form
 - Previous exams: MRI, mammo, US
- Reading room
 - PACS with hanging protocol and access to previous studies for comparison
 - CAD: kinetic curves and angiomaps
 - Access to LMR, and CD or DVD drive
 - Viewbox for analog mammos

Interpretation & reporting

- Findings based on BI-RADS lexicon
 - Enhancing focus/foci = ≤5mm
 - Enhancing mass
 - Shape, margins, internal enhancement
 - Non-mass-like Enhancement
 - Distribution, internal enhancement
 - Enhancement kinetics
 - Washout, plateau, persistent

Reporting

- Final assessment
 - 1 negative
 - 2 benign findings
 - 3 short interval follow-up (6 months)
 - 3a 6 week follow-up (not in current edition)
 - 4 suspicious, recommend biopsy (a, b, c)
 - 5 highly suspicious, take appropriate action
 - 6 known malignancy (neoadjuvant tx)
- BI-RADS 0?
 - Suggest correlative US, recommend follow-up appropriate for MR finding in case of neg US

Reporting includes

- Notifying referring doctors of positive results and recommendations
- Scheduling any recommended correlative imaging or intervention
- Scheduling follow-up MRI
42 yo BRCA+ Surveillance MRI

Recommendation: Focused US
If negative, MR localized excisional bx

< 6 months later axillary lump

US CNB = II IDC
2 + nodes; soft tissue axillary metastasis

Review
• How to select an optimal magnet
• What to be aware of during installation & setup
• Exam performance & interpretation issues